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Shear-driven heat flow in absence of a temperature gradient
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Abstract. Jaynesian statistical inference is used to predict that steady, non-uniform Couette flow in a
simple liquid will generate a heat flux proportional to the gradient of the square of the strain-rate when
the temperature gradient is negligible. The heat flux is divided into phonon and self-diffusion components,
with the latter coupling to the elastic strain and inelastic strain-rate. Operators for all these are substituted
into the information-theoretic phase-space distribution. By taking moments of an exact equation for this
distribution derived by Robertson, one obtains an evolution equation for the self-diffusion component of
the heat flux which, in a steady state, predicts shear-driven heat flow.

PACS. 05.60.-k Transport processes – 05.70.Ln Nonequilibrium and irreversible thermodynamics –
66.60.+a Thermal conduction in nonmetallic liquids

1 Introduction

Baranyai et al. [1] have studied, using molecular dynamics,
a liquid undergoing Couette flow in a cell of length L in
the y-direction with a steady flow ux(y) driven by a force

Fx(y) = Fx1 sin(q1y), q1 = 2π/L. (1)

These conditions induce a temperature T (y) which could
be adjusted so that the first-order term in the Fourier ex-
pansion of T (y), proportional to cos(2q1y), is zero. It is
found that the first Fourier component, JQ1, of the heat
flow can be explained if JQ has a term ξ∂γ2

1/∂y, where
γ1 is the leading Fourier component of the velocity gradi-
ent. Accordingly, when the temperature gradient can be
neglected, a y-dependent shear-rate γ ≡ ∂ux/∂y will gen-
erate a heat flux JQy.

In this paper, we seek a theoretical prediction of the
ξ term in JQ which is postulated in [1] to fit the com-
puter results. Such a prediction can be effected by making
a statistical derivation of a generalized Cattaneo-Vernotte
equation [2] which, in the absence of a temperature gra-
dient, has the form at a point R in the fluid:

∂Js(R, t)/∂t = −(1/τs)Js(R, t) + Fs(R, t) (2)

where Fs, in a steady state with negligible ∇T , is −ξ∇γ2.
Js is the component of JQ carried by self-diffusing parti-
cles. As discussed below, we do not predict an equation
resembling (2) for the phonon component, Jp, with a non-
zero driving term when ∇T = 0.

The derivation of equation (2) invokes the exact
Robertson approach [3]. This method introduces a Jaynes-
type [4] statistical distribution ρ̃(x) over phase coordinates
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x, given the number density n(R), velocity u(R), elastic
strain σαβ(R), and inelastic strain-rate Cαβ(R) at each
point R. Fs depends on these variables. The distribution
ρ̃ satisfies the matching conditions:

Js(R) =
∫
ρ̃Ĵs(R)dx (3a)

σαβ(R) =
∫
ρ̃σ̂αβ(R)dx (3b)

Cαβ(R) =
∫
ρ̃Ĉαβ(R)dx (3c)

where Ĵs, σ̂αβ , and Ĉαβ are operators to be defined in what
follows. Robertson derives from the Liouville equation an
exact equation for ∂ρ̃/∂t. Multiplying this equation by
the operators and integrating over phase space, we derive
evolution equations for ∂Js(R, t)/∂t and ∂Cαβ(R, t)/∂t as
illustrated in previous work [5]. The equation for ∂Cαβ/∂t
shows that, in a state where ∂Cαβ/∂t can be neglected,
σαβ is proportional to Cαβ , the total strain-rate in such
a state. Substitution of this into equation (2) yields the
desired steady-state result, with an explicit expression for
ρ̃ in terms of parameters of the model.

In the following section, we define the model and
the operators Ĵs, Ĵp, σ̂αβ , and Ĉαβ and summarize the
Robertson formalism. A definition is given of ρ̃ and an
equation written down for ∂ρ̃/∂t from which we can, by
taking moments, extract the evolution equations for Js

and Cαβ . In Section 3, we calculate Fs in terms of the
Lagrange multipliers introduced to satisfy (3a–c). This
is done by deriving the evolution equation for ∂Js/∂t
and specializing to the steady state under conditions
∇n = 0 = ∇T . We also derive the equation for ∂Cαβ/∂t.
In Section 4, we use (3c) to complete the expression
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of the Lagrange multipliers in terms of Cαβ , permitting
us to express Fs in terms of the strain-rate. In Section 5,
we find the explicit coefficient relating Fs to ∇γ2. In Sec-
tion 6, there is a summary and discussion.

2 Summary of the model and Robertson
approach

In Jaynesian statistical inference [4] maximization of

S = −κ
∫
ρ̃(t, x) ln ρ̃(t, x)dx (4)

subject to specified energy and (3a–c) yields:

ρ̃(x) = Z−1 exp
[
−
∫

dRβ(R)
{
Ĥd(R)

+
∑
α

(λαqs(R)Ĵαs (R) + λαqp(R)Ĵp(R))

+
∑
αβ

(λσ,αβ(R)σ̂αβ(R) + λc,αβ(R)Ĉαβ(R))
}]
.

(5)

Temperature, heat flow, elastic strain, and inelastic strain-
rate in the fluid vary continuously with position R. The
λ(R) parameters are the aforementioned Lagrange mul-
tipliers determined to satisfy (3a–c) identically, β(R) =
{κT (R)}−1. Z is a functional of the Lagrange multipliers
which normalizes ρ̃(x) to unity. Ĥd(R) is an energy den-
sity operator. In the present paper, we deal with the case
where β(R) does not depend appreciably on R, and so∫

dRβ(R)Ĥd(R) = βĤ. (6)

Particle velocities in Ĥd are referred to the mass veloc-
ity u(R), and so those in Ĥ depend on the set {u(ri)},
where {ri} are the configuration coordinates, in a way not
important for the present calculation.

Robertson [3] has derived from the Liouville equation
an evolution equation satisfied exactly by ρ̃ in the form:

∂ρ̃/∂t = −ip̂R(t)L̂ρ̃(t)

−
∫ t

0

dt′p̂R(t)L̂T̂ (t, t′)[1− p̂R(t′)]L̂ρ̃(t′) (7)

where L̂ is the Liouville operator, and T̂ (t, t′) is the solu-
tion of

∂T̂ (t, t′)/∂t′ = iT̂ (t, t′)[1− p̂R(t′)]L̂ (8)

p̂R(t) is defined by

p̂Rχ ≡
∑
n

∫
dR{δρ̃/δ〈F̂n(R)〉}Tr{F̂n(R, x)χ} (9)

where χ(x) is arbitrary and the {F̂n(R, x)} are oper-
ators such as Ĵp(R), Ĵs(R), σ̂αβ(R), and Ĉαβ(R) in
equation (5).

If we multiply equation (7) by Ĵr
s (R, x) or Ĉαβ(R, x)

and integrate over phase space, we obtain equations for
∂Ĵs(R, t)/∂t and ∂Cαβ(R, t)/∂t. These will be derived be-
low. From their steady-state limits, we can predict that Js

will be driven, when ∇T is negligible, by a term propor-
tional to ∇γ2. To use this formalism, we must first define
the operators.

Consider first the phonon heat flow, Jp(R). It is known
from Brillouin and neutron scattering [6] that phonon-like
modes propagate in simple liquids. We imagine an ideal
medium of uniform density and temperature in which such
modes propagate, and, by analogy with the corresponding
expression for a solid, introduce the operator,

Ĵp(R) =
∑
k

~ωk(∂ωi/∂k)n̂(k,R) (10)

for the heat flux carried by phonons, with n̂(k,R) an op-
erator for the density of phonons with wave vector k at R.
The sum is over longitudinal modes. The spectrum ω(k)
bends over [6] at high k, as in a solid, and so an approxi-
mate model [7] has been proposed in which heat is carried
by hydrodynamic modes with ω < ω̄, with a flat spectrum
for ω > ω̄. Modes in the latter region exceed the shear re-
laxation frequency, and so elastic displacements can be
regarded as superpositions of modes with ω > ω̄.

The ideal medium in which the hydrodynamic heat-
carrying modes propagate does not provide for an ad-
ditional heat flux component, Js, carried by molecules
which diffuse randomly out of their cages as a result of
local expansions in regions having diameter of a few in-
termolecular lengths. In their interaction with phonons,
these regions are analogous to lattice defects which scatter
phonons in a solid at low temperature. They are caused
by a superposition of modes with wavelength of the or-
der of the diameter of the localized expansion, which the
model treats as independent of the hydrodynamic modes.
Since the phonon model makes no provision for such an in-
teraction, we neglect all correlations between the phonon
operators in Ĵp and the particle operators in Ĵs.

As an operator Ĵs to represent the self-diffusing heat
flux, let us take

Ĵs(R) = m−1
N∑
i=1

piΛihiδ(ri −R). (11)

Λi is the probability that a particle i (1 5 i 5 N) of
mass m at ri can cross the potential barriers formed by
its neighbours and diffuse out of its cage. Λi depends on
the set {ri − rj}, where {rj} are positions of near neigh-
bours. We neglect any dependence on more distant neigh-
bours, since a local expansion occurs, in this picture, in a
region whose diameter is of the order of the intermolecular
spacing. Λi should, in general, have an expansion in Her-
mite functions of the particle momenta, but there are no
experiments requiring this refinement, and so we use for
Λi a thermal average depending on n(ri), T (ri) and the
relative positions of near neighbours of i. In this paper,
the R-dependence of n(R) and T (R) is not important,
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and so they are treated as constants, as is h(R). The
momenta {pi} are calculated in a frame in which mass
velocity, u(R), vanishes. Particle i carries heat hi.

For the elastic strain operator, we shall use:

σ̂αβ(R)=[ρ(R)]−1
N∑
i=1

mδ(ri−R)[{∂sβi /∂rαi +∂sαi /∂r
β
i }]

(12)

where si is the elastic component of displacement at po-
sition ri of particle i. The displacements si are superpo-
sitions of modes, whose total number is Np, having fre-
quency > ω̄. Because of low liquid compressibility, mass
density ρ is treated as a constant. For the si, by analogy
with the corresponding expressions for a solid, we take

si = N−
1
2

∑
ν

eνqν exp(ikν · ri) (13a)

〈qνqν′〉 = (κT/mω̄2)δνν′ . (13b)

The self-diffusive motion in regions of local expansion
contributes to the inelastic displacement at ri and there-
fore to the inelastic strain-rate. There is an additional
inelastic component of the strain-rate at R arising from
self-diffusive motion caused by the fact that the motion of
the particle at ri displaces it relative to the elastic stain
field, since the latter is calculated from an independent
model. The inelastic displacements produce an irrecover-
able change in the strain σαβ given by the expression (12).
Combining the two inelastic strain-rate contributions, we
have:

Ĉαβ(R) = [ρ(R)]−1
∑
i

(∂/∂rαi )[Λi(p
β
i + pi · ∇ris

β
i )]

× δ(ri −R) + (α↔ β).
(14)

From the way in which the model is set up, the phonon
operators in Ĵp are uncorrelated with the operators in
(11), (12), and (14). Therefore, if we calculate statistical
averages using ρ̃, Js will not depend on λp nor Jp on λs.
For similar reasons, ∂Js/∂t and ∂Jp/∂t are independent
when ∇T = 0; it is Js and not Jp which depends on
∇(C≈ : C≈ ). In a steady state, C≈ is the total strain-rate,
with Cxy = Cyx = γ.

3 Evolution equations for heat flux
and inelastic shear-rate

To predict that Js is proportional to ∇γ2 in a quasi-steady
state, under circumstances where ∇Rn(R) and ∇RT (R)
and time-derivatives are negligible, we need a derivation
of equation (2), yielding an explicit expression for Fs in
terms of ∇(C≈ : C≈ ). Since Fs depends on σαβ and on Cαβ ,
we need a similar evolution equation for Cαβ which pre-
dicts that, when ∂Cαβ/∂t is neglected, σαβ is proportional
to Cαβ .

In the framework of the Robertson formalism [3], an
equation for ∂Js/∂t can be derived by multiplying equa-
tion (7) by Ĵs and integrating over phase space. It has
been shown [5] that the driving term comes from

F r
s = −

∫
dxĴr

s (R, x)iL̂ρ̃(x, t) (15)

from the first term on the right in equation (7). The dis-
sipative terms stem from the term involving T̂ in equa-
tion (7). We can provide for the fact that Js(R) is defined
in a frame in which mass velocity vanishes by interpret-
ing momentum pi = p̃i − u(ri) in the definitions of all
the operators other than L̂, where p̃i is the momentum
in the laboratory frame. It has been shown [8] that for a
dilute gas this interpretation of pi, when β(R) depends
on R, will yield linear contributions to the driving term
calculated from (15) which agree identically with Grad
theory [9]. The distinction between pi and p̃i makes no
explicit contribution to the term proportional to ∇γ2 in
Fs. We shall suppose for convenience that R is a point in
space where u(R) = 0.

From tensorial invariance, the leading dissipative term
in ∂Js(R, t)/∂t should have the form (−1/τs)Js, as in (2).
This and non-linear dissipative terms are algebraic combi-
nations of Js, σαβ , and Cαβ arising from fast irreversible
processes in the vicinity of R. Gradients in the driving
term Fs arise from the interaction with the surroundings
of the fluid in a volume element centred at R. τs may de-
pend non-linearly on the shear-rate, but this dependence
can be neglected when we multiply the right-hand mem-
ber of (15) by τs to calculate the lowest-order contribution
to Fs, in a quasi-steady state, proportional to ∇γ2.

Substituting from (5), (11), and (14) into (15), and
expanding about the λ-independent term, we find that,
among the leading non-zero contributions to F r

s , the one
which can involve a gradient of λσ is

− (hβ2/ρ2)〈
N∑
i=1

priΛiδ(ri −R)

×
∑
αγ,χε

∫
dR′dR′′λσ,αγ(R′)λσ,χε(R′′)

×
N∑
k=1

p̃k · ∇rkδ(rk −R′){(∂sγk/∂rαk ) + (∂sαk/∂r
γ
k)}

×
N∑
w=1

δ(rw −R′′){(∂sχw/∂rεw) + (∂sεw/∂r
χ
w)}〉0.

(16)

Each term must have a product of two s-operators in or-
der not to vanish. We have iL̂ =

∑
k pk · (∂/∂rk) + . . .

The gradient ∂/∂rk, after a partial integration over R′,
will yield a factor ∂λσ,αγ/∂R′. This will be propor-
tional to ∂γ(R)/∂R once we show below that λσ,αβ , in
a steady state, is proportional to Cαβ . The average indi-
cated by angular brackets is over an equilibrium ensemble.
As explained above, we average the products of phonon
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operators using (13a, b) and then average the resulting ex-
pression over an equilibrium canonical distribution, since
phonon and self diffusion models are defined indepen-
dently of one another.

Neglecting second-order spatial derivatives of λσ,αβ ,
we get for the contribution to Fs calculated from (16) the
result:

F r
s,σ = −{2n2hΓ1/N(ω̄ρ)2}(∂/∂Rr){

∑
αβ

λ2
σ,αβ} (17a)

Γ1 ≡
∑
ν

g(kν)k2
ν(exνe

y
ν)2 (17b)

where g(kν) is the liquid structure factor and the index
ν runs over all modes with ων > ω̄. The structure factor
appears, from the factors exp(ikν · ri), if we take a canon-
ical average of 〈sα1 sα2 〉 in (13a), after taking the phonon
average, with r1 fixed.

Instead of the two σ̂αβ-operators appearing in (16),
we can have another contribution, F r

s,c, calculated from
(15), involving two Ĉαβ operators. This contribution will
depend on ∇λc. Terms of this type will be non-zero if they
have no s-operators or two of these. We get from the terms
with no s-operators:

F r(1)
s,c = −(hβ2/ρ2m)

〈 N∑
i=1

p2
iΛi(R)δ(ri −R)

×
∫

dR′dR′′
∑
q

p̃q · (∂/∂R′)
∑
αγ,χε

λc,αγ(R′)λc,χε(R′′)

×
∑
w

(∂/∂rαq )(Λqpγq )δ(rq −R′)(∂/∂rχw)(Λwpεw)

× δ(rw −R′′)
〉

0
+ (α↔ γ) + (χ↔ ε) + (α↔ γ, χ↔ ε).

(18)

Again, a partial integration over R′ will yield a factor
∂λc,αγ(R′)/∂R′. Integration over a product of four mo-
menta gives:

〈pσkpγqpr
ip
ε
w〉 = (mκT )2[δσγδkqδrεδiw

+ δσrδkiδqwδγε + δσεδkwδγrδqi]. (19)

Putting (19) back into (18), we consider the contribution
to F r(1)

s,c from the first product of Kronecker deltas in the
square bracket. This is:

− (2hm/ρ2)
∑
αγ,χε

∫
dR′n2g(R−R′)

× 〈(∂/∂Rχ)Λ2
1(R)(∂/∂R′α)Λ2(R′)〉R,R′

× λc,χr(R)(∂/∂R′γ)λc,αγ(R′) (20)

where g(R−R′) is the radial distribution function. This
multiplies a canonical average, denoted by angular brack-
ets, taking r1 = R, r2 = R′ to be fixed points. If Λ1(r1)
is appreciable, so that component 1 is diffusing, we shall
suppose that Λ2(r2) is very small, since diffusing parti-
cles are unlikely to be near neighbours. Otherwise, the

locally-expanded region would have a size of several inter-
molecular lengths, which is improbable. For this reason,
the arguments of Λ1 and Λ2 should not overlap apprecia-
bly in configurations likely to occur. The angular bracket
should factor. If Λ2(R′) depends on a set of relative po-
sitions {|rj −R′|}, where rj is a neighbour of R′, then
〈Λ2〉R′ will not depend appreciably on R′, since the aver-
age is an integral over the relative position, and so, to a
good approximation,

(∂/∂R′)〈Λ2(R′)〉R′ = 0. (21)

Thus (20) should give a negligible contribution to F
r(1)
s,c .

The contributions from the remaining two terms in (19)
will not, in general, vanish. They will be included in the
final result, given below.

By analogy with (18), we can set up F r(2)
s,c , the part of

F r
s,c depending on s-dependent terms in Ĉαβ . We have:

F r(2)
s,c = −hβ2(ρm)−2〈

N∑
i=1

pr
iΛi(R)δ(ri −R)

×
∑
k

∫
dR′dR′′p̃k · (∂/∂R′)

×
∑
αγ,χε

λc,αγ(R′)λc,χε(R′′)

×
∑
q,w

(∂/∂rαq ){Λq
∑
y

pyq(∂/∂r
y
q )sγq}

× δ(rq −R′)δkq(∂/∂rχw)

× {Λw
∑
z

pzw(∂/∂rzw)sεw}δ(rw −R′′)〉0

+ (α↔ γ) + (χ↔ ε) + (α↔ γ, χ↔ ε). (22)

The averages 〈sαq sβj 〉0 are calculated from (13b) and the
products of four momenta from (19). Since the Greek in-
dices are dummy indices, the index interchanges multiply
the term shown by 4.

After lengthy computations, we finally determine:

F r
s = −{(∂/∂Rr)(

∑
α,β

λc,αβλc,βα)}

× [(h/ρ2V )〈(∂/∂Rx)Λ2
1(R)(∂/∂Rx)Λ1(R)〉R

× (N + κT Γ̃1/mω̄
2)

+ {8hκTn2Γ2/(mρ2Nω̄2)}〈Λ2
1〉R〈Λ1〉R

+ {4hκT/ρ2mω̄2V }Γ̃2〈Λ3
1(R)〉R]

−
∑
α,β

{(∂/∂Rα)λc,αβ}λc,βr

× {32hκTn2Γ2/ρ
2mω̄2N}〈Λ2

1〉R〈Λ1〉R
−
∑
α,β

λc,αβ(∂/∂Rβ)λc,αr

× [{3hκTn2Γ2/(ρ2mω̄2N)}〈Λ2
1〉R〈Λ1〉R

+ {2hN/(ρ2V )}〈(∂/∂Rx)Λ2
1(R)(∂/∂Rx)Λ1(R)〉R]

− (∂/∂Rr)
∑
α,β

λσ,αβλσ,βαn
2hΓ1/N(ω̄ρ)2) (23a)
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Γ̃1 ≡ (1/3)
∑
ν

k2
ν(exνe

y
ν)2 (23b)

Γ̃2 ≡
∑
ν

k4
ν(exνe

y
ν)2 (23c)

Γ2 ≡
∑
ν

g(kν)k4
ν(exνe

y
νe
z
ν)2. (23d)

To show that F r
s is proportional to (∂/∂Rr){γ(R)}2,

we must demonstrate that, in a steady state, γc,αβ and
χσ,αβ are proportional to Cαβ , the inelastic strain-rate
which is the total strain-rate in a steady state. To show
that γσ,αβ in such a state is proportional to Cαβ , we need
the evolution equation for ∂Cαβ/∂t. This is calculated
by multiplying equation (7) by Ĉαβ and integrating over
phase space. The linear terms are easily shown to be:

∂Cαβ/∂t = (−1/τc)Cαβ + (8κT Γ̃2/ρω̄
2V )〈Λ1(R)〉Rλσ,αβ .

(24)

In the quasi-steady-state, where the time-derivative can
be neglected:

λσ,αβ = {ρ2ω̄2V/(8κT Γ̃2τc〈Λ1(R)〉R)} ≡ νσCαβ . (25)

4 Evaluation of Lagrange multipliers

λσ,αβ and λc,αβ can be expressed as sums of products of
the variables Ĵs, σαβ , and Cαβ by applying the match-
ing conditions (3a–c). We have already found an expres-
sion for λσ,αβ appropriate to the conditions of the present
problem, in equation (25), and so we need here to use the
matching condition (3c) to find the lowest-order term in
λc,αβ . Once it is established that both λσ,αβ and λc,αβ

are proportional to Cαβ under the given conditions, then
since Cxy = Cyx = γ are the only non-zero components of
Cαβ , we see that all the terms in (23a) are proportional
to ∇γ2.

Expanding ρ̃ in (3c) about the equilibrium canonical
distribution, ρc, we have:

Cαβ(R) = −β
∫
ρcdxĈαβ(R)

∑
γ,ζ

∫
dR′Ĉγζ(R′)λc,γζ(R′)

= −ν−1
c λc,αβ(R) (26a)

ν−1
c ≡ (4/ρ)[〈(∂Λ1/∂Rx)2〉R

+ (κT/Nmω̄2){Γ0〈(∂Λ1/∂Rx)2〉R
+ 2Γ̃2〈(Λ1(R))2〉R}] (26b)

Γ0 ≡
∑
ν

k2
ν(exν)2. (26c)

5 Prediction of shear-driven heat flow

Equation (23a) predicts that Fs is proportional to ∇γ2 if
we substitute into (23a) our results from (25) and (26a)

and simplify. We can use:

(∂/∂Ry)
∑
α,β

λv,αβλv,βα = 2ν2
v∂γ

2/∂Ry (v = σ, c) (27a)

∑
α,β

{(∂/∂Rα)λc,αβ}λc,βy =
1
2
ν2

c ∂γ
2/∂Ry (27b)

∑
α,β

λc,αβ(∂/∂Rβ)λc,αy =
1
2
ν2

c ∂γ
2/∂Ry. (27c)

The final expression for Jys in the quasi-steady state takes
the form:

Jys = −τs(∂γ2/∂Ry)[ν2
c {(h/ρ2)(3n+ 2κT Γ̃1/mω̄

2V )

× 〈(∂Λ2
1/∂Rx)(∂Λ1/∂Rx)〉R

+ (48hκTn2Γ2/ρ
2mω̄2V )〈Λ2

1〉R〈Λ1〉R
+ (8hκT/ρ2mω̄2V )Γ̃2〈Λ3

1〉R
+ ν2

σ{2n2hΓ1/N(ρω̄2)2}].
(28)

The square bracket in equation (28) is > 0. νσ, νc, and
the square bracket in (28) are all intensive, if we suppose
that Γ̃1, Γ1, Γ̃2, and Γ2 are all sums of a number Np of
frequencies ων , and that Np is O(N). One must assume
that the density of phonon states in k-space is O(N) at
high frequencies as it is in the low-frequency limit.

6 Discussion

The computer simulation for a simple liquid [1] which
inspired the present work calculated the leading non-
vanishing Fourier component of heat flux and strain-rate
under a sinusoidal transverse force Fx(y). The results were
consistent with the existence of a term in the heat flux pro-
portional to∇(∇u : (∇u)T). The present paper sets out to
predict such a term in the quasi-steady state, where time-
dependence of heat flow can be neglected over the period
of measurement, by calculating Fs in equation (2). Atten-
tion is concentrated on Js, since, according to the model,
Jp should not correlate appreciably with Ĉαβ . With the
aid of the formalism of Robertson [3,5], we express Fs in
the form (15), and so we have to evaluate the right-hand
member of that equation, using equation (5) for ρ̃.

On substituting for ρ̃ from (5) into (15), we expand
the exponent in ρ̃ and pick out terms involving an even
number of particle momenta {pi} and an even number
of elastic displacement operators {si}. Such products are
evaluated with the aid of equations (13a,b) and (19),
with phonon and particle operators averaged indepen-
dently. The only terms in iL̂ which have been found to
contribute to the dependence in (15) on ∇γ come from
m−1

∑
k p̃k · (∂/∂rk). If this operates on δ(rk − R′) in

(16), we get −
∑
k p̃k · (∂/∂R′)δ(rk − R′), giving a fac-

tor ∂λσ,αγ(R′)/∂R′ on partial integration with respect to
R′. λσ is shown in Section 3 to be proportional to Cαβ ,
and we obtain ∇Cαβ = ∂γ/∂y if Cαβ = Cxy = γ. Simi-
lar reasoning applies to equation (22). The proportionality



292 The European Physical Journal B

coefficient, ξ, calculated here is > 0, as found in the com-
puter simulation. It has not been practicable to estimate ξ
quantitatively because we do not have a tractable expres-
sion for the average probability Λ1(R, x) that a particle
at R can cross the potential barriers blocking escape from
its cage.

To make the statistical prediction (28), we introduce
the operators σ̂αβ(R) given by equation (12) for elastic
strain at R and Ĉαβ(R), equation (14) for inelastic
strain-rate. Use of these operators, never proposed by
other authors, has been inspired by the use of their
statistical averages, σαβ and Cαβ , in a non-equilibrium
thermodynamics of visco-elasticity in liquids [10]. All
other authors [11] have used the inelastic component
of strain rather than the elastic component in setting
up a thermodynamics of viscoelasticity. The inelastic
component is difficult to define uniquely and there-
fore does not lend itself to an informational statistical
calculation. The present work serves to illustrate the
utility of the operators used here. This and an ear-
lier paper [8] which determined the ∇T term in the
Cattaneo-Vernotte equation [2] for a dilute gas are
the only existing applications to specific problems
of Robertson’s general theory [3] which supposed a

non-uniform system in which the variables and Lagrange
multipliers vary continuously with position R in space.
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